Existence of mild solutions for fractional evolution equations with nonlocal conditions

نویسنده

  • He Yang
چکیده

*Correspondence: [email protected] Department of Mathematics, Northwest Normal University, Lanzhou, 730070, People’s Republic of China Abstract This paper deals with the existence and uniqueness of mild solutions for a class of fractional evolution equations with nonlocal initial conditions. We present some local growth conditions on a nonlinear part and a nonlocal term to guarantee the existence theorems. An example is given to illustrate the applicability of our results. MSC: 34A12; 35F25

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$L^p$-existence of mild solutions of fractional differential equations in Banach space

We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work. 

متن کامل

Existence of Mild Solutions to a Cauchy Problem Presented by Fractional Evolution Equation with an Integral Initial Condition

In this article, we apply two new fixed point theorems to investigate the existence of mild solutions for a nonlocal fractional Cauchy problem with an integral initial condition in Banach spaces.

متن کامل

Existence of Mild Solutions for Nonlocal Semilinear Fractional Evolution Equations

In this paper, we investigate a class of semilinear fractional evolution equations with nonlocal initial conditions given by (1) ⎧⎨ ⎩ dqu(t) dtq = Au(t)+(Fu)(t), t ∈ I, u(0)+g(u) = u0, where 0 < q< 1 , I is a compact interval. Sufficient conditions for the existence of mild solutions for the equation (1) are derived. The main tools include Laplace transform, Arzela-Ascoli’s Theorem, Schauder’s ...

متن کامل

On time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays

In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory

متن کامل

On the new concept of solutions and existence results for impulsive fractional evolution equations

Abstract. In this paper we discuss the existence of PC-mild solutions for Cauchy problems and nonlocal problems for impulsive fractional evolution equations involving Caputo fractional derivative. By utilizing the theory of operators semigroup, probability density functions via impulsive conditions, a new concept on a PC-mild solution for our problem is introduced. Our main techniques based on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012